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ABSTRACT 
Computer vision applications like camera calibration, 3D reconstruction, and object recognition and image 

registration are becoming widely popular now a day. In this paper an enhanced model for speeded up robust 

features (SURF) is proposed by which the object recognition process will become three times faster than 

common SURF model The main idea is to use efficient data structures for both, the detector and the descriptor. 

The detection of interest regions is considerably speed-up by using an integral image for scale space 

computation. The descriptor which is based on orientation histograms is accelerated by the use of an integral 

orientation histogram. We present an analysis of the computational costs comparing both parts of our approach 

to the conventional method. Extensive experiments show a speed-up by a factor of eight while the matching and 

repeatability performance is decreased only slightly. 

Keywords - Feature extraction, SURF, style, styling.

I. INTRODUCTION 
Extraction of features and discern information from images is one of the main aim of computer vision. 

Even though it can fulfill other purposes its use is well-known in near real-time applications like robot 

maneuvering or object tracking. Information extraction from images can resolve many issues for example; 

photogrammetry where geometric and geographic information are extracted from images is made by computer 

vision algorithms. Selecting out only the most important things of an image that can be localized repeatedly 

multiple images subsequently reduces the burden of data processing. However, feature extraction faces major 

bottlenecks for many of its implementations. For example, accurate GPS-denied visual navigation on moving 

vehicles requires 30 Hz frame rates on large images [2]. If the speed of feature extraction is improved it reduces 

the weight, size, and power demands of these systems, reducing the cost of deployment. Here comes the need 

implementing the most accurate extraction algorithm on readily available commercial hardware. 

Since features can be viewed from different angles, distances, and illumination, it is important that a 

feature descriptor be relatively invariant to changes in orientation, scale, brightness, and contrast, while 

remaining descriptive enough to be correctly matched against a pool of thousands of candidates. We chose the 

Speeded-Up Robust Features (SURF) descriptor proposed by [1] and described in Section II. This produces 

descriptors half the size of previous algorithms, such as the Scale-Invariant Feature Transform (SIFT) [3], while 

retaining the same matching performance. Smaller feature vectors increase the speed of subsequent matching 

operations, while themselves being less expensive to compute. However, SURF cannot yet achieve interactive 

frame rates on a traditional CPU.  

In this paper we propose a modified SIFT method for recognition purpose. Our primary motivation is 

to significantly speed up the SIFT computation while at the same time keep the excellent matching performance. 

We demonstrate that by using approximations (mainly employing integral images) both the DoG detector (see 

section 2) and the SIFT-descriptor (see section 3) we can speed-up the SIFT computation by at least a factor of 

eight compared to the binaries provided by Lowe. Extensive experimental evaluations (see section 4) show that 

the loss in matching performance is negligible. 

 

II. RELATED WORK 
A. Interest Point Detectors 

The most widely used detector probably is the Harris corner detector [10], proposed back in 1988, 

based on the eigenvalues of the second-moment matrix. However, Harris corners are not scale-invariant. 

Lindeberg introduced the concept of automatic scale selection [1]. This allows to detect interest points in an 

image, each with their own characteristic scale. He experimented with both the determinant of the Hessian 

matrix as well as the Laplacian (which corresponds to the trace of the Hessian matrix) to detect blob like 
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structures. Mikolajczyk and Schmid refined this method, creating robust and scale-invariant feature detectors with 

high repeatability, which they coined Harris-Laplace and Hessian-Laplace [11]. They used a (scale-adapted) 

Harris measure or the determinant of the Hessian matrix to select the location, and Laplacian to select the scale. 

Focusing on speed, Lowe [12] approximated the Laplacian of Gaussian (LoG) by a Difference of Gaussians 

(DoG) filter. Several other scale-invariant interest point detectors have been proposed. Examples are the salient 

region detector proposed by Kadir and Brady [13], which maximises the entropy within the region, and the edge-

based region detector proposed by Jurie et al. [14]. They seem less amenable to acceleration though. Also, several 

affine-invariant feature detectors have been proposed that can cope with longer viewpoint changes. However, 

these fall outside the scope of this paper. By studying the existing detectors and from published comparisons [15, 

8], we can conclude that (1) Hessian-based detectors are more stable and repeatable than their Harris-based 

counterparts. Using the determinant of the Hessian matrix rather than its trace (the Laplacian) seems 

advantageous, as it fires less on elongated, ill-localized structures. Also, (2) approximations like the DoG can 

bring speed at a low cost in terms of lost accuracy. 

 

B. Feature Descriptors 

An even larger variety of feature descriptors has been proposed, like Gaussian derivatives [16], moment 

invariants [17], complex features [18, 19], steerable filters [20], phase-based local features [21], and descriptors 

representing the distribution of smaller-scale features within the interest point neighborhood. The latter, 

introduced by Lowe [2], have been shown to outperform the others [7]. This can be explained by the fact that they 

capture a substantial amount of information about the spatial intensity patterns, while at the same time being 

robust to small deformations or localization errors. The descriptor in [2], called SIFT for short, computes a 

histogram of local oriented gradients around the interest point and stores the bins in a 128-dimensional vector (8 

orientation bins for each of the 4 × 4 location bins). 

Various refinements on this basic scheme have been proposed. Ke and Sukthankar [4] applied PCA on 

the gradient image. This PCA-SIFT yields a 36- dimensional descriptor which is fast for matching, but proved to 

be less distinctive than SIFT in a second comparative study by Mikolajczyk et al. [8] and slower feature 

computation reduces the effect of fast matching. In the same paper [8], the authors have proposed a variant of 

SIFT, called GLOH, which proved to be even more distinctive with the same number of dimensions. However, 

GLOH is computationally more expensive. 

The SIFT descriptor still seems to be the most appealing descriptor for practical uses, and hence also the 

most widely used nowadays. It is distinctive and relatively fast, which is crucial for on-line applications. 

Recently, Se et al. [22] implemented SIFT on a Field Programmable Gate Array (FPGA) and improved its speed 

by an order of magnitude. However, the high dimensionality of the descriptor is a drawback of SIFT at the 

matching step. For on-line applications on a regular PC, each one of the three steps (detection, description, 

matching) should be faster still. Lowe proposed a best-bin-first alternative [2] in order to speed up the matching 

step, but this results in lower accuracy. 

Our approach in this paper, we propose a novel detector-descriptor scheme, coined SURF (Speeded-Up 

Robust Features). The detector is based on the Hessian matrix [11, 1], but uses a very basic approximation, just as 

DoG [2] is a very basic Laplacian-based detector. It relies on integral images to reduce the computation time and 

we therefore call it the ’Fast-Hessian’ detector. The descriptor, on the other hand, describes a distribution of Haar-

wavelet responses within the interest point neighborhood. Again, we exploit integral images for speed. Moreover, 

only 64 dimensions are used, reducing the time for feature computation and matching, and increasing 

simultaneously the robustness. We also present a new indexing step based on the sign of the Laplacian, which 

increases not only the matching speed, but also the robustness of the descriptor. 

In order to make the paper more self-contained, we succinctly discuss the concept of integral images, as 

defined by [23]. They allow for the fast implementation of box type convolution filters. The entry of an integral 

image IΣ(x) at a location x = (x, y) represents the sum of all pixels in the input image I of a rectangular region 

formed by the point x and the origin,  With IΣ(x) calculated, it only takes four 

additions to calculate the sum of the intensities over any upright, rectangular area, independent of its size. 

 

III. PROPOSED METHODOLOGY 
A. Dog detector 

In order to detect scale invariant key-points Lowe suggests repeatedly smoothing the input image and 

identifying key locations in scale space. In order to detect even very small scales Lowe extends this approach and 

proposes to double the input image before building the scale space. The different scale levels are produced by 

recursive filtering with a variable-scale Gaussian kernel. A local maxima search is finally applied to the 
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Difference-of-Gaussian images which can be computed of adjacent scale images, in order to detect key-points in 

scale space.  

TABLE I.  MAJOR DIFFERENCES BETWEEN ORIGINAL SURF         DETECTOR AND OUR PROPOSED APPROACH. 

SURF 
Enhanced SURF 

Model 

Image doubling - 

- 
Calculate integral 

image 

DoG scale space DoM scale space 

Post-processing - 

 

To accelerate this approach we propose several approximations and changes see Table 1. The key idea 

of our method is to considerably reduce the costs for computing the scale space by using Difference-of-Mean 

(DoM) images instead of Difference-of-Gaussians (DoG). This DoM images can be computed very efficiently by 

using a box filter in combination with an integral image as introduced by Viola and Jones [11] (capturing the 

main idea of [12]). Once the integral image is computed, it allows to compute the mean within a rectangular 

region in constant time independent of the size of the region. This property allows fast box filtering and can be 

used for linear sampling of the scale axis which is realized by successively increasing the size of the filter kernel. 

Adjacent scale space images are subtracted and a local maxima search is applied to the Difference-of-Mean 

images in order to detect key-points. For a reliable detection of key-points at all scales it is important to normalize 

the DoM response with 

 
where s1, s2 corresponds to the size of the small and larger box filter, respectively. The parameter sensitivity 

captures the minimal contrast of the mean gray values of the inner region (s1) and the outer region (s2 −s1) and can 

be used to adjust the sensitivity of the detector. Since experiments with DoG indicate that small scales cannot be 

reliably matched we skip the doubling of the image size, which again provides a significant speed-up. Once the 

key-points have been detected we do not make any further post-processing like an accurate key-point localization 

because due to the use of integral images we have already pixel accuracy at each scale. But note that the accuracy 

of the obtained points is not as precise as with the DoG, nevertheless the detected points are good for recognition 

tasks but less suitable for geometric tasks like estimation of the fundamental matrix. 

 

1) Computational costs: The box filtering approach using integral images is depicted in Algorithm 1. Once the 

integral image is pre-computed which takes 2 additions for each image pixel, a single box filter response can be 

computed, independent of its size, with 4 memory accesses, 3 additions and a single multiplication which is 

needed for normalizing the box region.  

a) Algorithm 1 Integral image computation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table 2 which has been adapted from [13], we compare the box filtering approach to other 

commonly used Gaussian filtering techniques. Simple 2-D convolution is the slowest one since the complexity 

// pre-computation 

for each image point do 

Propagate integral image {1 addition} 

Increase value {1 addition} 

end for 

// apply box filter with a given kernel size 

for each image point do 

Compute intersection {3 addition} 

Normalize {1 multiplication} 

end for 
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for each pixel is O(N2), where N corresponds to the filter size. Much more efficient is to make use of the 

separability of the Gaussian function which allows convolution by applying two passes of the 1-D function in 

the horizontal and vertical directions. This leads to linear costs in the kernel size N. Other methods like FFT are 

independent with respect to the filter kernel size but depend on the size of the input image W ×H. However, as 

can be seen in Figure 2(a), the computational costs are higher than for the separable Gaussian for a kernel size of 

7×7 (as proposed by Lowe in [14]). A similar result holds for recursive Gaussian filters which allow convolution 

in constant time but are still computationally more demanding for small filter kernels. 

 

B. SURF Descriptor 

Reliable matching of key-points is performed by feature vectors generated from their local 

neighborhoods. Lowe suggests to use the gradient information around that the descriptor can be represented 

relative to this orientation, thereby achieving rotation invariance. Gradients within a circular region are used to 

compute an orientation histogram, and local maxima in the histogram are used as characteristic orientations. 

 

 

 

TABLE II.  COMPARISON OF VARIOUS FILTERING TECHNIQUES    (CALCULATIONS PER PIXEL) 

FILTER 

TECHNIQUE 
ADDITIONS 

MULTIPLICATIO

NS 

2D-Gauss N2 N2-1 

Recursive Gauss 2· N-1 N+1 

Separate Gauss 6 14 

FFT 2 · log(W · H) 2 · log(W · H) +1 

Box Filter 2+3 1 

 

To obtain a descriptor Lowe proposes to divide the surrounding region into 4 × 4 sub-patches. From 

each sub-patch an orientation histogram with 8 bins is computed and concatenated to form a single feature vector. 

Since orientation histograms form the basic computation for the descriptor this leads to the idea to use integral 

histograms [15]. Integral histograms are an extension of integral images using for each histogram bin (e.g. 

orientation) a separate integral image. Once the integral orientation histogram is computed, histograms can be 

accessed in constant time independent of the size of the region. Similar to integral images integral histograms can 

only provide histograms of rectangular regions. 

For orientation histogram computation we use un-weighted squared regions. Furthermore, for the 

descriptor we rotate the midpoints of each sub-patch relative to the orientation and compute the histograms of 

overlapping sub-patches without aligning the squared region but shifting the sub-patch histogram relative to the 

main orientation. The main advantage of our method is that we make use of the full resolution of the input image 

without additional computational costs. 

 

1) Computational costs: The major question is how many descriptors have to be calculated in order to obtain a 

speed up for the integral version compared to the conventional approach. We define the costs for single 

histogram computation for both approaches which has been done by adapting the analysis from [15]. We assume 

that the gradient image has already been computed. In addition we assume computing histograms only over 

squared regions. 

a) Algorithm 2 Conventional histogram computation: 

 

 

 

 

 

The conventional method for histogram computation is given in Algorithm 2. Once the gradient image 

is available, for each gradient in the observed region an assignment to the correct bin value must be done. 

//histogram computation 

for each histogram do 

for each gradient within window do 

Find bin { 1 multiplication} 

Increase bin value { 1 addition} 

end for 

end for 
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//pre-computation 

for each gradient do 

for each bin do 

Propagate integral histogram { 1 addition} 

end for 

Find bin { 1 multiplication} 

Increase bin value { 1 addition} 

end for 

//histogram computation 

foreach histogram do 

for each bin do 

Compute intersection { 3 additions} 

end for 

end for 

Consequently the conventional method strongly depends on the number of gradients contributing to the 

histogram which leads to the complexity O(N2) for a squared region where N corresponds to the window size. 

In addition the computational costs for a squared region is 

k . N
2
. ( cadd + cmult  ) 

where k corresponds to the number of histograms, cadd represent costs for an addition and cmult are the costs for a 

multiplication. 

a)  Algorithm 3 Integral histogram computation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Considering the integral histogram computation illustrated in Algorithm 3, we see that equivalent to integral 

images some pre-computations have to be done. Once the integral orientation histogram has been computed, 

orientation histograms can accessed in k · b · 3 · cadd, where b corresponds to the number of bins (in our case 16 

bins are used). Similar to integral images rectangular regions can be accessed. The costs for histogram 

computation does not depend on the number of gradients within a region. Consequently the total costs including 

the computation of the integral orientation histogram can be written as 

W . H. ( b . cadd + cadd + cmult ) + k . b . 3 . cadd 

where W × H represents the input image size. 

Figure 2(b) compares standard histogram and integral histogram computation, where we have used 

relative costs for additions and multiplications from [15] (addition:1 - multiplication:4). Other parameters of the 

cost functions, such as the histogram patch size, have been experimentally determined. As we can see in Figure 

2(b), initially the costs for the integral histogram are much higher however once the integral image is computed 

the costs increase very slowly. In contrast the costs of the conventional method increase linearly with the number 

of computed descriptors. Integral orientation histograms are profitable especially when calculated over large 

regions. This is especially suited for our approach because we always compute the descriptors on the original 

resolution. Consequently, we take advantage of using the whole information of the input image. 

 

IV. EXPERIMENTAL RESULTS 
We compare our novel approach to Lowe’s method with respect to performance and speed. For 

matching performance we run two types of experiments to explore the effects of the approximations made in our 

approach. First, both methods are examined with respect to rotation, scale and perspective invariance on a data-

set of 15 commonly used images. Secondly we compare the runtime of our approach to Lowe’s publicly available 

binaries 1. 

 

A. Artificial Transformations 

For all artificial transformations we used the same criterions for determining repeatability of the detector 

and the matching score of the descriptor. The repeatability is obtained through a simple location criterion while 
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for the matching score a key-point match and the corresponding nearest descriptor match is required. In Fig. 12, 

each line between two images indicates a pair of corresponding feature points.  

 
 

 
Fig 1.Features extracted using Approximated SURF from an image pair matching point for normal case. Test 

images at (Top) the best case, (Bottom) the normal case 

 

Due to the box filter approximation the rotation is the worst case scenario for the detector. Even for the 

descriptor the worst case because no rotational sampling is done. Therefore we artificially rotate each image from 

0°to 90°of our data-set with steps of 15°. In Figure 3 we see that both, the detector and the descriptor of the 

approximated SURF implementation behave worst at a rotation of 45°. However, at the same time the 

performance is not much worse to SIFT. The strong performance decrease of SURF can be explained by the fact 

that the small scale key-points are lost because of the smoothing effect after the bilinear transformation. 
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Fig 2.Matching point for Worst cases. 

 

Second, scale invariance is tested. As a reference image we used a downscaled image (0.8) in order to 

have scale changes in both directions. Figure 4(a) shows that our approach which passes on detecting key-points 

with small scales performs slightly better than SURF.  

Finally, we examined the repeatability of the detector and the matching of the descriptor by generating 

different projective transformations of      the image. Again the results in Figure 4(b) show          good 

performance for the approximated SURF implementation. 

 

B. Speed 

We have a non-optimized C++ implementation of the approximated SURF which has been compared to 

the SURF binaries provided by Lowe.  

IMAGE 

SIZE 
SURF 

Approxim

ated SURF 

800 x 640 4.05 s
 

0.515 s 

400 x 320 1.45 s 0.710 s 

200 x 160 0.55 s 0.044 s 

 

In Table 3 the processing times for feature detection of different image sizes are listed. This experiment 

was done on a Pentium 4 with 3.2 GHz. Results show that approximated SURF provides a speed-up of a factor 8 

with this non optimized implementation where the major benefit is obtained in the detection process. Optimizing 

the implementation we expect to achieve at least a factor 12 to 16. 

 

V. CONCLUSION 
In this paper we have presented a novel approximation of the SURF model that achieves a considerable 

speed-up of the original method (at least a factor of eight using our non -optimized C++ implementation) while at 

the same time achieving comparable matching performance. We have carefully analyzed the speed-up gain 

theoretically and have performed extensive experimental evaluations. 

This new fast SURF variant opens several venues of further research which we are currently 

investigating. Once we have calculated the integral images the costs for the descriptor calculation is negligible. 

Therefore, we can perform a local neighbor search around a key-point for more discriminative /reliable 

descriptors. This should further increase the matching performance. Having such a fast method, tracking using 

SURF becomes feasible. This should result in highly robust trackers. Another idea that is currently investigated is 

to use SURF in an Adaboost framework. This has already been proposed by Zhang et al. [16], but having a fast 

SURF will considerably speed-up the training process. 
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